American University of Beirut
 MATH 201
 Calculus and Analytic Geometry III
 Fall 2009-2010

Final Exam - solution

Exercise 1 a. Find the directional derivative of $f(x, y)=x^{2} e^{-2 y}$ at $P(1,0)$ in the direction of the vector $\mathbf{v}=3 \mathbf{i}+4 \mathbf{j}$
b. The equation $1-x-y^{2}-\sin (x y)$ defines y as a differentiable function of x. Find $d y / d x$ at the point $P(0,1)$.
c. Find the points on the surface $x y+y z+z x-x-z^{2}=0$, where the tangent plane is parallel to the $x y$-plane.

Exercise 2 Find the absolute minimum and maximum values of $f(x, y)=x^{2}+x y+y^{2}-3 x+3 y$ on the triangular region R cut from the first quadrant by the line $x+y=4$.

Exercise 3 Use Lagrange Multipliers to find the maximum and the minimum values of $f(x, y)=$ $x y$ subject to the constraint $x^{2}+y^{2}=10$.

Exercise 4 Reverse the order of integration, then evaluate the integral

$$
I=\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x
$$

solution: to express the integral in the order $d x d y$, we sketch the region of integration \mathcal{R} in the $x y$-plane.

$$
\begin{aligned}
I & =\int_{0}^{4} \int_{0}^{\sqrt{4-y}} \frac{x e^{2 y}}{4-y} d x d y \\
& =\int_{0}^{4} \frac{e^{2 y}}{4-y}\left[\frac{x^{2}}{2}\right]_{0}^{\sqrt{4-y}} d y \\
& =\int_{0}^{4} \frac{e^{2 y}}{2} d y=\left[\frac{e^{2 y}}{8}\right]_{0}^{4}=\frac{e^{8}-1}{4}
\end{aligned}
$$

Exercise 5 Let V be the volume of the region D that is bounded below by the $x y$-plane, above by the paraboloid $z=9-x^{2}-y^{2}$, and lying outside the cylinder $x^{2}+y^{2}=1$.
solution:
a) $V=\int_{0}^{2 \pi} \int_{1}^{3} \int_{0}^{9-r^{2}} r d z d r d \theta$

$$
\begin{aligned}
& =2 \pi \int_{1}^{3} r\left(9-r^{2}\right) d r \\
& =2 \pi\left[\frac{9}{2} r^{2}-\frac{r^{4}}{4}\right]_{1}^{3}=32 \pi
\end{aligned}
$$

b) to express the integral in the order $d r d z d \theta$, we sketch the region of integration \mathcal{R} in the $r z$-plane.

$$
V=\int_{0}^{2 \pi} \int_{0}^{8} \int_{1}^{\sqrt{9-z}} r d r d z d \theta
$$

Exercise 6 Let V be the volume of the region that is bounded form below by the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ and from above by the cone $z=\sqrt{x^{2}+y^{2}}$. Express V as an iterated triple integral in spherical coordinates, then evaluate the resulting integral (sketch the region of integration).
solution: The equation of the sphere $x^{2}+y^{2}+(z-1)^{2}=1$ in spherical coordinates is $\rho=2 \cos \phi$

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \frac{8}{3} \cos ^{3} \phi \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi} \frac{2}{3}\left[-\cos ^{4} \phi\right]_{\pi / 4}^{\pi / 2} d \theta=\int_{0}^{2 \pi} \frac{1}{6} d \theta=\frac{\pi}{3}
\end{aligned}
$$

Exercise 7 Write six different iterated triple integrals for the volume of the tetrahedron cut from the first octant by the plane $6 x+3 y+2 z=6$.
(do not evaluate any of the integrals)

Exercise 8 a. Find the line integral of $f(x, y)=\left(x+y^{2}\right) / \sqrt{1+x^{2}}$ along the curve $C: y=x^{2} / 2$ from $(1,1 / 2)$ to $(0,0)$.
solution: $-r(t)=(1-t) \mathbf{i}+\frac{(1-t)^{2}}{2} \mathbf{j}, 0 \leq t \leq 1 ;$
$-v(t)=\frac{d r}{d t}=-\mathbf{i}-(1-t) \mathbf{j}$, and $|v(t)|=\sqrt{1+(1-t)^{2}} ;$
$-f(t)=\frac{(1-t)+\frac{(1-t)^{4}}{4}}{\sqrt{1+(1-t)^{2}}}$, hence
$\int_{C} f(s) d s=\int_{0}^{1} f(t) \cdot|v(t)| d t=\int_{0}^{1}\left[(1-t)+\frac{(1-t)^{4}}{4}\right] d t=11 / 20$
b. Show that the differential form $2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+(1 / z) d z$ is exact, then evaluate

$$
\int_{(0,2,1)}^{(1, \pi / 2,2)} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+(1 / z) d z
$$

solution: $f(x, y, z)=2 x \cos y+\ln (y z)+C$ is a potential function (check it!), hence
$\int_{(0,2,1)}^{(1, \pi / 2,2)} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+(1 / z) d z=[2 x \cos y+\ln (y z)+C]_{(0,2,1)}^{(1, \pi / 2,2)}=\ln (\pi / 2)$
c. Find the counterclockwise circulation of the field $F=2 x y^{3} \mathbf{i}+4 x^{2} y^{2} \mathbf{j}$ across the curve C in the first quadrant, bounded by the lines $y=0, x=1$ and the curve $y=x^{3}$.
i) direct calculation: cicculation $=\oint_{C} M d x+N d y$
$C_{1}: r_{1}(t)=t \mathbf{i}, 0 \leq t \leq 1 ; M d x+N d y=0$, and $\int_{C_{1}} d x+N d y=0$
$C_{2}: r_{2}(t)=\mathbf{i}+t \mathbf{j}, 0 \leq t \leq 1 ; M d x+N d y=4 t^{2} d t$, and $\int_{C_{2}} M d x+N d y=\int_{0}^{1} 4 t^{2} d t=4 / 3$
$C_{3}: r_{3}(t)=(1-t) \mathbf{i}+(1-t)^{3} \mathbf{j}, 0 \leq t \leq 1 ; M d x+N d y=-14(1-t)^{10} d t$, and
$\int_{C_{3}} M d x+N d y=\int_{0}^{1}-14(1-t)^{10} d t=-14 / 11$
$\operatorname{circulation}(F)=\oint_{C} M d x+N d y=0+4 / 3-14 / 11=2 / 33$
ii) Green's theorem: $\operatorname{circulation}(F)=\iint_{R}(\operatorname{curlF}) \cdot \mathbf{k} d A$
$(\operatorname{curlF}) \cdot \mathbf{k}=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=8 x y^{2}-6 x y^{2}=2 x y^{2}$
$\iint_{R}(\mathbf{c u r l F}) \cdot \mathbf{k} d A=\int_{0}^{1} \int_{0}^{x^{3}} 2 x y^{2} d y d x=\int_{0}^{1} 2 x\left[\frac{y^{3}}{3}\right]_{0}^{x^{3}} d x=2 / 3 \int_{0}^{1} x^{10} d x=2 / 33$

